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Accurate estimation of reference evapotranspiration (ETo) is critical for effective water resource 
management, particularly in regions with limited meteorological data. However, existing empirical 
and deep learning models often require extensive data or complex modeling, limiting their practical 
application in data-scarce environments. This study innovatively applies static (non-sequential) 
machine learning models K-Nearest Neighbors (KNN), Decision Tree (DT), and Random Forest (RF) 
justified by temporal dependency analysis, to estimate daily ETo using varying input scenarios, from 
full-feature datasets to minimal single-variable inputs. Results show that RF outperforms other 
models, achieving a root mean square error (RMSE) of 0.52 mm/day and a coefficient of determination 
(R²) of 0.96, with temperature and solar radiation identified as key predictors. These findings highlight 
the practicality of RF for robust and efficient ETo estimation, offering a reliable tool for water 
management and agricultural planning in resource-constrained settings.
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 Agriculture is the largest global consumer of freshwater, accounting for nearly 70% of total withdrawals 
worldwide1–3. Inefficient irrigation practices and difficulty in accurately estimating crop water requirements 
often result in over- or under-watering, leading to water waste, plant stress, and reduced yields. These challenges 
are particularly acute in arid and semi-arid regions, where water scarcity threatens food security and economic 
stability4–6. Climate change exacerbates this situation by intensifying droughts, altering precipitation patterns, 
and increasing uncertainty in water availability, emphasizing the need for accurate water management strategies7.

Evapotranspiration (ETo), the combined loss of water through soil evaporation and plant transpiration—is 
a key factor in irrigation scheduling and water resource planning8–10. Numerous empirical and physically based 
approaches have been developed to estimate ETo using climatic variables such as temperature, solar radiation, 
relative humidity, and wind speed11,12. Among these, the FAO Penman–Monteith (PM) equation is widely 
considered the most reliable standard, as it incorporates multiple meteorological parameters13. However, the PM 
method requires extensive instrumentation, making it costly and impractical for regions with limited resources. 
In contrast, simpler equations, such as Blaney–Criddle, Priestley–Taylor, and Hargreaves–Samani, reduce 
data requirements but often compromise accuracy14–16. Direct measurement techniques, including lysimeters, 
Bowen ratio systems, and eddy covariance methods, provide localized precision but are resource-intensive and 
unsuitable for large-scale applications 17.

The cost of acquiring and maintaining sensors to measure climate parameters remains a major barrier 
to widespread implementation of high-accuracy models18,19. This issue is further magnified in large-scale 
monitoring networks or long-term studies, where the cumulative expense of high-precision equipment becomes 
prohibitive15,16. These challenges highlight the need for cost-effective, accurate approaches that reduce reliance 
on expensive instrumentation while maintaining robust performance.

Recent advances in machine learning (ML) have demonstrated considerable promise in modeling complex 
environmental processes, offering flexible and data-driven solutions without strict assumptions about system 
dynamics20,21. ML-based approaches have been successfully applied to ETo estimation using different subsets of 
meteorological data, with studies reporting improved accuracy even with fewer input variables22,23. For instance, 
some models using only temperature or solar radiation have achieved competitive performance compared to 
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traditional methods24,25. However, most previous studies have focused on either developing a single ML model 
or optimizing a specific equation, with limited research systematically comparing multiple algorithms under 
various input feature scenarios.

This study addresses this gap by evaluating the performance of three machine learning algorithms: K-Nearest 
Neighbors (KNN), Decision Tree (DT), and Random Forest (RF) to estimate ETo under different combinations 
of climatic inputs. The goal is to identify a balance between estimation accuracy and model simplicity, providing 
a practical, cost-effective framework for irrigation scheduling and water resource management, particularly in 
water-scarce agricultural regions.

Materials and methods
Study area
This study was conducted in three agriculturally significant governorates of Egypt—El-Kalyoubia, El-Fayoum, 
and Ismailia—to capture a broad range of agroecological and climatic conditions (Fig.  1). These sites were 
deliberately chosen to ensure that the study outcomes are broadly representative of Egypt’s major agricultural 
zones:

•	 El-Kalyoubia: Located in the Nile Delta, this region is characterized by fertile alluvial soils, intensive fruit and 
vegetable production, and a semi-arid climate with relatively high humidity influenced by its proximity to the 
Nile River.

•	 El-Fayoum: Situated in a natural depression southwest of Cairo, El-Fayoum represents a transition zone be-
tween irrigated agriculture and desert plateaus. The area is irrigated by Nile-fed canals and experiences sig-
nificant spatial climatic variability.

•	 Ismailia: Positioned in northeastern Egypt near the Suez Canal, Ismailia has sandy, low-fertility soils and re-
lies heavily on irrigation. It is known for high solar radiation and strong winds, making it suitable for testing 
water-use estimation models under challenging environmental conditions.

The selected governorates encompass diverse topography, soil types, and cropping systems, providing a robust 
basis for evaluating reference evapotranspiration (ETo) prediction models in a range of agroecosystems.

Dataset and preprocessing
Daily meteorological data were collected from three private automated weather stations (Ambient Weather WS-
1002-WiFi) installed at the study sites and summarized in Table 1. Each station was equipped with sensors to 
measure air temperature, relative humidity, wind speed, wind direction, rainfall, and solar radiation. Data were 
continuously recorded over a three-year period (January 2021–December 2023), producing a total of 3,286 daily 
observations per station.

All meteorological data were initially stored in Microsoft Excel format and processed using Python (v3.10). 
The preprocessing workflow consisted of three main steps as shown in Fig. 2:

Fig. 1.  Map of weather stations.
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Fig. 2.  flowchart detailing the methodology.

 

Parameter Symbol Unit Source/Sensor Type Description and Relevance

Maximum temperature Tmax °C Thermistor sensor, WS-1002-WiFi Daily max air temperature at 2 m height

Minimum temperature Tmin °C Thermistor sensor, WS-1002-WiFi Daily min air temperature at 2 m height

Relative humidity (max) RHx % Capacitive humidity sensor Maximum daily relative humidity

Relative humidity (min) RHn % Capacitive humidity sensor Minimum daily relative humidity

Wind speed U2 m s⁻¹ Ultrasonic anemometer, WS-1002-WiFi Average daily wind speed at 2 m

Wind direction WD Degrees Ultrasonic anemometer Average daily wind direction

Solar radiation Rs MJ m⁻² day⁻¹ Pyranometer sensor Total daily solar energy received

Rainfall P mm Tipping-bucket rain gauge Daily total precipitation

Table 1.  Summarizes the meteorological parameters, units, sensor types, and their relevance to 
evapotranspiration modeling.
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	1.	 Data Cleaning and Imputation: Missing values, which accounted for < 5% of all records, were replaced using 
mean imputation via the SimpleImputer class from scikit-learn. The same method was applied to both pre-
dictor and target variables.

	2.	 Dataset Partitioning: The dataset was divided into training (80%) and testing (20%) subsets using train_test_
split with random_state = 42 for reproducibility. A 5-fold cross-validation scheme was implemented during 
model training and hyperparameter tuning to minimize overfitting.

	3.	 Feature Standardization: All predictor variables were standardized to zero mean and unit variance using the 
StandardScaler class. Parameters were computed from the training set only, then applied to the test set to 
prevent data leakage:

	
z = x − µ

σ
� (1)

where x is the original feature, µ is its mean, and σ is its standard deviation (training set only).

Autocorrelation analysis
 To assess temporal dependencies in meteorological variables, autocorrelation (ACF) and partial autocorrelation 
(PACF) functions were computed for each input parameter at lags of 0-365 and 1–30 days, respectively. Results 
showed strong lag-1 autocorrelation in temperature and relative humidity series, while wind speed and solar 
radiation displayed weaker short-term dependencies. These findings highlight the temporal persistence of 
climate variables, which may affect predictive performance and are discussed in Sect. 3.

	
ACF (k) =

∑
N
t=k+1(xt − x)(xt−k − x)∑

N
t = 1(xt − x)2 � (2)

Where:

•	 k: Lag order.
•	 Xt​: Value of the variable at time t.
•	 x: Mean of the series.
•	 N: Number of observations.

 Measures the direct correlation between xt​ and xt−k after removing the effect of intermediate lags. Estimated 
using Yule–Walker or regression-based methods:

	 P ACF (k) = ∅kk � (3)

Where:
∅ kk  ​: The partial regression coefficient of xt−k​ when regressing xt​ on its lagged values up to k.

Multicollinearity assessment
Multicollinearity among input features was evaluated using Pearson correlation coefficients and Variance 
Inflation Factor (VIF) scores. Tmax and Tmin exhibited strong correlation (r ≈ 0.89), while RH variables 
correlated moderately with temperature (r ≈ − 0.65). All VIF scores were below 5, indicating acceptable levels 
of multicollinearity. Tree-based models (DT, RF) are inherently robust to correlated features, while KNN was 
standardized to mitigate scale effects. No variables were removed due to multicollinearity to preserve physical 
interpretability of the Penman–Monteith framework. Quantifies multicollinearity among predictor variables:

	
V IF i = 1

1 − R2
i

� (4)

Where:

•	 ​R2
i : Coefficient of determination obtained by regressing predictor xi on all other predictors.

•	 Interpretation:

	– VIF > 10: Strong multicollinearity.
	– VIF < 5: Acceptable range.

Reference evapotranspiration calculation
Reference evapotranspiration (ETo) was calculated using the FAO Penman–Monteith equation26:

	
ET o =

0.408 ∆ (Rn − G) + γ 900
T +273 U2(es − ea)

∆ + γ (1 + 0.34 U2)
� (5)

Where:

ETo reference evapotranspiration [mm day−1],
 Rn net radiation at the crop surface [MJ m−2 day−1],
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 G soil heat flux density [MJ m−2 day−1,
 T mean daily air temperature at 2 m height [°C],
u2 wind speed at 2 m height [m s−1],
es saturation vapour pressure [kPa], 
ea actual vapour pressure [kPa], 
 es - ea saturation vapour pressure deficit [kPa],
Δ slope vapour pressure curve [kPa °C−1],
 γ psychrometric constant [kPa °C−1].

Map of the study area
Figure 1 shows a publication-quality map of the study area, including station locations, topographic features 
(digital elevation model), vegetation cover (NDVI-based land classification), and administrative boundaries. 
This representation provides essential spatial context for understanding agroclimatic variability across the 
selected regions.

Machine learning models
K-nearest neighbors (KNN)
The KNN algorithm predicts target values based on the responses of its k nearest neighbors in feature space. The 
Manhattan distance metric was applied:

	
d (x, y) =

∑ n

i=1
⌈xi − yi⌉� (6)

where d(x, y) is the distance between vectors x and y in n-dimensional space. Hyperparameters: k ∈ [1,10], 
optimized via 5-fold cross-validation based on minimum RMSE.

Decision tree (DT)
The DT algorithm partitions the feature space into homogeneous regions via hierarchical, rule-based splits. 
Maximum tree depth (dmax​) was tuned between 1 and 10 to prevent overfitting.

Random forest (RF)
RF is an ensemble method combining multiple decision trees, reducing overfitting through bootstrapping and 
random feature selection. Hyperparameters included:

•	 Number of trees (nestimatorsn ​): [10, 50, 100, 200, 300, 400, 500, 600, 700, 800]
•	 Maximum depth (dmax​): [1–10]

Model scenarios
Four modeling scenarios were implemented to assess the contribution of different meteorological inputs:

	1.	 Full feature set: T, Rs​, U2​, RH.
	2.	 Three feature combinations: e.g., T, RH, U2; T, RH, Rs​.
	3.	 Two feature combinations: e.g., T, Rs; RH, U2​.
	4.	 Single-feature models: T, Rs, U2​, or RH individually.

This structure reveals the most influential predictors for ETo estimation and evaluates model robustness under 
data-limited conditions.

Model evaluation metrics
The predictive performance of the machine learning models was rigorously assessed using a comprehensive set 
of statistical indices. These metrics evaluate both the accuracy and reliability of predictions relative to observed 
reference evapotranspiration (ETo) values.

Error-based metrics
The Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) quantify the magnitude of prediction 
errors, while the coefficient of determination (R2) measures the proportion of variance in the observed data 
explained by the model27,28:

	
RMSE =

√
1
n

∑
n
i=1(Oi − Pi)2� (7)

	
MAE = 1

n

∑
n
i=1 (|Oi − Pi|)� (8)

	
R2 = 1 −

∑ n

i=1(Oi − Pi)2

∑ n

i=1(Oi − O)2 � (9)

Scientific Reports |        (2025) 15:38485 5| https://doi.org/10.1038/s41598-025-23166-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


where Pi​ and Oi​ are the predicted and observed values, O is the mean of observed values, and n is the sample 
size.

Bias and relative error metrics
To identify systematic bias and express error magnitude as a percentage of observed values, the Mean Bias Error 
(MBE) was computed:

	
MBE = 1

n

∑
n
i=1 (Pi − Oi)� (10)

Model efficiency and agreement indices
The Nash–Sutcliffe Efficiency (NSE) and Kling-Gupta Efficiency (KGE) provide robust measures of predictive 
skill and agreement between predicted and observed values:

	
NSE = 1 −

∑
n
i=1(Pi − Oi)2

∑
n
i=1(Oi − O)2 � (11)

The Kling-Gupta Efficiency (KGE) was chosen as the primary metric for model evaluation due to its ability to 
integrate correlation, bias, and variability errors into a single comprehensive measure. The KGE is defined as:

	 KGE = 1 −
√

(r − 1)2 + (β − 1)2 + (γ − 1)2� (12)

where:

•	 r is the Pearson correlation coefficient between observed and simulated values, representing linear correla-
tion,

•	 β = S

O
is the bias ratio between the mean simulated values ( S) and mean observed values ( O),

•	 γ = Cvs
CV O

 is the variability ratio between the coefficient of variation (CV) of simulated values (CVs ​) and 
observed values (CV​o).

Each model was trained and tested using a cross-validation strategy to ensure robustness and generalizability of 
the results. The mean KGE values along with their standard deviations (represented as error bars) were computed 
for each scenario. To statistically assess differences between model-scenario performances, group letters (A–O) 
were assigned based on post-hoc multiple comparison tests (e.g., Tukey’s HSD), with shared letters indicating no 
statistically significant difference at the 95% confidence level.

A model achieves perfect predictive performance when RMSE, MAE, and MBE approach zero, while R2, 
NSE, and KGE approach unity.

This expanded evaluation framework provides a holistic assessment of model performance, capturing absolute 
error, bias, percentage-based error, and overall predictive agreement across different input feature scenarios.

Results and discussions
Temporal dependency analysis through ACF and PACF
To examine the temporal characteristics of the meteorological variables used in the modeling process, 
autocorrelation (ACF) and partial autocorrelation (PACF) analyses were performed. These analyses were 
applied to maximum temperature (Tx), minimum temperature (Tn), wind speed at 2 m (U2), solar radiation 
(Rs), maximum relative humidity (HRx), minimum relative humidity (HRn), and reference evapotranspiration 
(ETrs).

Figures 3, 4, 5, 6, 7, 8 and 9 display the ACF and PACF plots for each variable. As shown in Figs. 3 and 4, 
both Tx and Tn exhibit strong seasonal behavior, with ACF patterns displaying a sinusoidal structure and slowly 
decaying correlations. Their PACF plots reveal significant correlations at lag 1 and lag 2, followed by a rapid 
decline, indicating that while these variables exhibit long-term seasonal dependencies, short-term autoregressive 
influence is relatively limited.

In contrast, U2 (Fig. 5) shows a sharp initial drop in the ACF and weak persistence beyond lag 10, while 
its PACF indicates significance only at the first few lags. This suggests limited temporal memory and minimal 
autocorrelation in the wind speed data.

Solar radiation (Fig.  6) also displays a pronounced seasonal pattern similar to temperature, with high 
autocorrelation at lags associated with the annual cycle. The PACF for Rs confirms significant short-term lags 
(1–3), supporting the relevance of recent values in predictive modeling.

Relative humidity (Figs. 7 and 8) demonstrates substantially weaker autocorrelation. Both HRx and HRn 
exhibit a rapid decline in the ACF and limited significant lags in the PACF, indicating near-random temporal 
behavior. This justifies treating these variables as independent across daily time steps in non-sequential machine 
learning models.

Reference evapotranspiration (ETrs) follows a seasonal autocorrelation pattern (Fig.  9), with high ACF 
values persisting over annual cycles, and significant PACF lags at positions 1–5. This suggests that ETrs, while 
seasonally dependent, can be effectively modeled using daily meteorological inputs without requiring explicit 
time-series modeling frameworks.
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These findings collectively support the application of machine learning models in a static (non-temporal) 
framework, as most variables exhibit weak short-term temporal dependencies that can be implicitly captured by 
data-driven models.

Correlation analysis of predictor variables
The correlation matrix presented in Fig.  10 provides insight into the linear relationships among the input 
variables and ETrs. Solar radiation (Rs) exhibited the highest positive correlation with ETrs (r = 0.83), followed 

Fig. 5.  ACF and PACF plots for wind speed at 2 m (U2).

 

Fig. 4.  ACF and PACF plots for minimum temperature (Tn).

 

Fig. 3.  ACF and PACF plots for maximum temperature (Tx).
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by maximum temperature (r = 0.78) and minimum temperature (r = 0.72). These strong correlations highlight 
the critical role of radiative and thermal energy in driving evapotranspiration.

Wind speed (U2) showed a moderate positive correlation with ETrs (r = 0.57), reflecting its contribution to 
vapor transport and surface moisture removal. In contrast, maximum and minimum relative humidity (HRx 
and HRn) demonstrated negative correlations with ETrs (r = − 0.40 and r = − 0.62, respectively), indicating that 
higher humidity suppresses evapotranspiration by reducing the vapor pressure deficit.

Fig. 8.  ACF and PACF plots for minimum relative humidity (HRn).

 

Fig. 7.  ACF and PACF plots for maximum relative humidity (HRx).

 

Fig. 6.  ACF and PACF plots for solar radiation (Rs).
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Strong inter-variable correlations were also observed, particularly between Tx and Tn (r = 0.88), and between 
HRx and HRn (r = 0.54), suggesting potential multicollinearity. These relationships were considered during 
feature selection and scenario design to ensure model generalizability and reduce redundancy.

Overall, the correlation analysis guided the selection of the most informative features for predictive 
modeling. Rs, Tx, and Tn emerged as the most influential variables, while U2 and humidity metrics provided 
complementary information useful in capturing complex evapotranspiration dynamics.

Model evaluation across scenarios
The performance of three machine learning models—K-Nearest Neighbors (KNN), Decision Tree (DT), and 
Random Forest (RF)—was evaluated under four input feature scenarios: (i) all features combined, (ii) three-
feature combinations, (iii) two-feature combinations, and (iv) single-feature inputs. Model performance was 
assessed using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), the coefficient of determination 
(R²),  Mean Bias Error (MBE), Nash-Sutcliffe Efficiency (NSE), and KGE. Summary results are presented in 
Figs. 11, 12, 13, 14, 15, 16 and 17.

Performance across parameter values
The effect of algorithmic parameter tuning was assessed for KNN, DT, and RF using ten discrete parameter levels 
(1–10). Evaluation metrics included RMSE, MAE, R², MBE, KGE, and NSE. Tukey’s HSD test (α = 0.05) was 
applied for statistical grouping.

RMSE As illustrated in Fig. 11, all algorithms exhibited decreasing RMSE with increasing parameter values. 
Decision Tree consistently produced the highest RMSE values, starting at 1.97 (group A) for parameter 1 and 
improving to 0.65 (group J) at parameter 10. KNN demonstrated a gradual reduction in RMSE, ranging from 
0.64 (A) to 0.45 (J). Random Forest yielded the lowest RMSE values across all parameter settings, ranging from 
0.47 (group r) to 0.43 (group J).

Fig. 10.  Correlation matrix among meteorological variables and ETrs.

 

Fig. 9.  ACF and PACF plots for reference evapotranspiration (ETrs).
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Significant differences were observed between algorithms at each parameter value. Random Forest 
outperformed Decision Tree at all levels and achieved statistical groupings that indicate significantly better 
performance (groups r–J vs. A–J). Performance gains plateaued after parameter value 7 for all models.

Figure 12 shows MAE trends mirrored those of RMSE. Decision Tree exhibited the highest MAE at parameter 
1 (1.48, group A) and the lowest at parameter 10 (0.43, group J). KNN showed improved performance from 0.41 
(group A) to 0.32 (group J), while Random Forest again yielded the lowest MAE, decreasing from 0.24 (group 
r) to 0.22 (group J).

The Random Forest consistently fell into the lowest statistical groupings, indicating its superior accuracy in 
minimizing absolute prediction error.

Figure 13 shows coefficient of determination (R²) values improved with increasing parameter settings. 
Random Forest achieved near-perfect R² values across all levels (0.96 to 0.99, groups ¤–J). KNN followed closely, 
reaching R² = 0.99 (group J) at parameter 10. In contrast, Decision Tree exhibited notably lower R² values, 

Fig. 12.  MAE across hyperparameters and feature scenarios.

 

Fig. 11.  RMSE across hyperparameters and feature scenarios.
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especially at lower parameter levels (0.52 at parameter 1, group A), with maximum improvement to 0.94 (group 
J) at parameter 10.

These results indicate better model fit and generalization by Random Forest and KNN, especially at higher 
parameter levels.

.
Mean Bias Error (MBE) analysis (Fig. 14) revealed systematic prediction biases. KNN and Random Forest 

predominantly exhibited negative MBE values, suggesting a tendency to underpredict, with MBE values ranging 
from − 0.04 to − 0.01. Conversely, Decision Tree showed a positive bias, with peak MBE at 0.077 (group D) at 
parameter 4.

This indicates a structural tendency of Decision Trees toward overestimation, particularly at mid-range 
parameter values.

Fig. 14.  MBE across hyperparameters and feature scenarios.

 

Fig. 13.  R² across hyperparameters and feature scenarios.
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Figure 15 shows model performance, as measured by the Kling-Gupta Efficiency (KGE), improved 
consistently with increasing parameter values. At the lowest parameter setting (1), KNN and Random Forest 
performed moderately (KGE ≈ 0.85), while Decision Tree lagged significantly (KGE ≈ 0.65), marked by group A. 
As the parameter value increased, all models showed steady improvement. By parameter value 6, KGE values 
exceeded 0.98 across models, with Random Forest slightly outperforming others, and statistical differences 
becoming negligible (group F and beyond). From parameter value 7 onward, all three models achieved near-
perfect performance (KGE > 0.99) and shared the same statistical groupings (G–J), indicating no significant 
differences. Overall, Random Forest maintained the most consistent top-tier performance, while Decision Tree 
showed the greatest relative improvement as parameter values increased.

Figure 16 shows model performance, measured by the Nash–Sutcliffe Efficiency (NSE), followed a trend 
similar to that observed for KGE. At parameter value 1, performance was lowest, particularly for the Decision 
Tree model, which achieved an NSE of approximately 0.55 (group A), while KNN and Random Forest scored 

Fig. 16.  NSE across hyperparameters and feature scenarios.

 

Fig. 15.  KGE across hyperparameters and feature scenarios.
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higher (around 0.85). As the parameter value increased, NSE improved for all models. From parameter value 
6 onward, NSE values exceeded 0.95 for all models, with Random Forest showing slightly higher stability. By 
parameter value 9 and 10, all models achieved NSE values above 0.98, and statistical groupings converged to group 
J, indicating no significant performance differences. Overall, Random Forest again showed the most consistent 
and high performance across all parameter settings, while Decision Tree showed the largest improvement range.

Performance across feature scenarios
The performance of the three machine learning models—K-Nearest Neighbors (KNN), Decision Tree (DT), 
and Random Forest (RF)—was evaluated in terms of RMSE, MAE, R², MBE, KGE, and NSE across 13 input 
feature scenarios. Error bars indicate the variability of all terms, and group letters denote statistically significant 
differences (p < 0.05) among the scenarios for each model.

The performance of the three models—K-Nearest Neighbors (KNN), Decision Tree, and Random Forest—
was evaluated across multiple scenarios using Root Mean Square Error (RMSE) as the accuracy metric. Overall, 
Random Forest consistently outperformed the other models, especially in scenarios combining multiple features. 
For instance, in the most comprehensive scenario involving all variables (Tx + Tn + HRx + HRn + Rs + U2), both 
Random Forest and KNN achieved the lowest RMSE of approximately 0.5 (group letter O), indicating superior 
predictive accuracy.

In simpler scenarios such as Rs, KNN slightly outperformed the others with an RMSE around 1.6 (group A). 
However, as additional features were incorporated, Random Forest showed clear advantages. For example, in 
scenarios like Tx + Tn + U2 and HRx + HRn + Rs, Random Forest achieved RMSE values as low as 0.9 and 1.2, 
outperforming KNN and Decision Tree, which recorded higher errors.

Decision Tree generally exhibited the highest RMSE across scenarios, particularly in complex combinations 
involving Tx and U2, with RMSE often exceeding 1.5. This suggests it is less effective in capturing complex 
interactions between features compared to the other models.

Error bars representing the standard deviation across multiple runs reveal that Random Forest predictions 
were not only more accurate but also more stable, showing smaller variance than both KNN and Decision 
Tree. KNN demonstrated competitive performance in several scenarios but with slightly higher variability, while 
Decision Tree showed the greatest inconsistency.

Statistical significance indicated by group letters (ranging from A to O) confirms that the differences in 
RMSE among models are meaningful. Random Forest dominated the higher-ranked groups (M through O) in 
scenarios with many combined features, while KNN excelled in simpler cases. Decision Tree’s grouping often 
overlapped with KNN but generally fell behind Random Forest.

These findings highlight Random Forest’s robustness and ability to leverage multiple feature interactions 
effectively, resulting in both more accurate and consistent predictions compared to KNN and Decision Tree.

Figure 18 shows the evaluation of the models using Mean Absolute Error (MAE) across various scenarios 
reveals trends consistent with the RMSE findings. Random Forest consistently delivers the lowest MAE values 
in most scenarios, particularly in those involving multiple combined features. For example, in the most 
comprehensive scenario (Tx + Tn + HRx + HRn + Rs + U2), Random Forest achieves an MAE of approximately 
0.3 (group letter O), reflecting highly accurate predictions. KNN shows competitive performance in simpler 
scenarios such as Rs, with an MAE around 1.2 (group A), but generally lags behind Random Forest as more 
features are introduced. Decision Tree tends to have the highest MAE values across scenarios, especially when 
the number of features increases, indicating less precise predictions.

Error bars representing variability further emphasize Random Forest’s superior stability, with smaller error 
margins compared to the more variable performances of KNN and Decision Tree. Statistical groupings reinforce 
these observations, with Random Forest dominating the top-performing groups in complex scenarios, while 
KNN and Decision Tree tend to share overlapping groups with lower performance rankings.

Figure 19 shows the coefficient of determination (R2) was used to evaluate the goodness of fit of the models 
across the various scenarios. Consistent with RMSE and MAE results, Random Forest generally achieved the 

Fig. 17.  RMSE across predictor scenarios.
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highest R2 values, indicating superior explanatory power and prediction accuracy. For example, in complex 
scenarios such as Tx + Tn + HRx + HRn + Rs + U2, Random Forest attained an R2 close to 0.98 (group letter O), 
reflecting near-perfect model fit. KNN followed closely, particularly in simpler scenarios like Rs with R2 ≈ 0.7 
(group A) but showed more variability in more complex combinations. Decision Tree consistently exhibited the 
lowest R2 values and larger error bars, highlighting its limited capacity to capture complex relationships within 
the data.

Error bars denoting standard deviation across multiple runs again confirm Random Forest’s stability and 
reliability compared to the more inconsistent performances of KNN and Decision Tree. The group letters 
corroborate that Random Forest holds significant statistical advantage in the majority of the scenarios, especially 
as the number of features increases.

Figure 20 depicts MBE analysis across different scenarios reveals the bias direction and magnitude in the 
models’ predictions. Random Forest generally shows minimal bias, with MBE values close to zero in most 
scenarios, especially in complex feature combinations such as Tx + Tn + HRx + HRn + Rs + U2 (MBE close to 
0, group letter O). KNN tends to exhibit a slight positive bias in simpler scenarios like Rs and Tx + Tn, while 
Decision Tree shows more variable bias, sometimes overestimating and other times underestimating, especially 
in scenarios involving U2 and Tx + Tn + HRx + HRn.

Error bars indicate that Random Forest maintains a consistent and stable bias across runs, reinforcing its 
reliability. Conversely, Decision Tree displays larger variability in bias, indicating less dependable predictions.

Figure 21 presents the NSE metric, which measures the predictive skill of the models relative to the observed 
mean, further supports previous findings. Across all scenarios, Random Forest consistently achieves the highest 
NSE values, often exceeding 0.9 in complex feature combinations like Tx + Tn + HRx + HRn + Rs + U2 (group 
O), indicating excellent model performance. KNN closely follows, particularly in simpler scenarios such as Rs 
with NSE around 0.7 (group A). Decision Tree generally displays the lowest NSE values and higher variability, 
indicating weaker predictive skill.

Error bars confirm Random Forest’s superior stability, showing lower variance compared to KNN and 
Decision Tree. The group letters further emphasize the statistical significance of Random Forest’s better 
performance across most scenarios.

Fig. 19.  R² across predictor scenarios.

 

Fig. 18.  MAE across predictor scenarios.
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The results in Fig. 22 show that model performance improved with the inclusion of more meteorological 
variables. The highest KGE was achieved by the Random Forest model (0.97) using the full input set 
(Tx + Tn + HRx + HRn + Rs + U2), followed closely by KNN (0.96) and Decision Tree (0.91). In contrast, the 
lowest performance was observed in the U2-only scenario, where Random Forest and KNN scored 0.50 and 
Decision Tree 0.45. Moderate results were seen in configurations like Tx + Tn + Rs (Random Forest: 0.88) 
and Rs + U2 (0.91). Overall, Random Forest consistently outperformed the other models across all scenarios, 
with KNN close behind in more complex input combinations. Decision Tree had the weakest performance, 
particularly in limited-input scenarios.

Fig. 22.  KGE d across predictor scenarios.

 

Fig. 21.  NSE across predictor scenarios.

 

Fig. 20.  MBE across predictor scenarios.
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Predicted vs. observed reference evapotranspiration (ETo)
The predictive performance of three machine learning models K-Nearest Neighbors (KNN), Decision Tree (DT), 
and Random Forest (RF) was evaluated for estimating reference evapotranspiration (ETo) under five distinct 
scenarios (S1 to S5). Key performance metrics including Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), Coefficient of Determination (R²), Mean Bias Error (MBE), Nash-Sutcliffe Efficiency (NSE), and KGE 
were used to assess model accuracy by comparing predicted against observed ETo values.

Predicted vs. observed ETo results for scenario 1 (S1)
In Scenario 1(Fig. 23), the Random Forest (RF) model again outperforms the K-Nearest Neighbors (KNN) and 
Decision Tree (DT) models, with the lowest RMSE of 0.516 and MAE of 0.312, indicating better prediction 
accuracy. The RF model has a high R² of 0.964, showing a very strong correlation between predicted and 
observed ETo values. The MBE for RF is −0.024, indicating minimal bias, and the model achieves NSE of 0.964, 
further confirming its reliability. The KNN model shows good performance with RMSE 0.595 and MAE 0.374, 
while the DT model performs slightly worse with RMSE 0.698 and MAE 0.457. Both KNN and DT have slightly 
lower R² values (0.953 and 0.93, respectively) compared to RF. Overall, the RF model delivers the most accurate 
and consistent ETo predictions for Scenario 1.

Predicted vs. observed ETo results for scenario 2 (S2)
In Scenario 2 (Fig. 24), the RF model demonstrates superior predictive accuracy with an RMSE of 0.926, an 
MAE of 0.625, and an R² of 0.885, indicating a strong fit between predicted and observed ETo values. The RF 
model also maintains a low MBE of −0.027, suggesting minimal systematic bias, and achieves NSE of 0.885, 
underscoring its reliability. The KNN model exhibits slightly lower performance with an RMSE of 1.064, MAE of 
0.682, and R² of 0.848, but maintains negligible bias (MBE = 0.002) and a respectable NSE of 0.860. The Decision 
Tree (DT) model performs moderately with an RMSE of 1.093, MAE of 0.714, and R² of 0.80, while showing 
a near-zero bias (MBE = 0.002) and NSE of 0.840. Visual inspection confirms that RF predictions cluster more 
tightly around the 1:1 line compared to KNN and DT, reflecting its enhanced precision and consistency for 
this scenario. Overall, Random Forest outperforms the other models in accurately estimating ETo under the 
conditions of Scenario 2.

Predicted vs. observed ETo results for scenario 3 (S3)
In Scenario 3 (Fig. 25), the RF model again demonstrates the best predictive performance, with an RMSE of 
1.063 and an MAE of 0.739, indicating lower overall prediction errors compared to the other models. The RF 
model achieves a solid R² value of 0.848, which reflects a strong correlation between predicted and observed ETo 

Fig. 24.  Predicted vs. Observed ETo - Scenario 2 (S2).

 

Fig. 23.  Predicted vs. Observed ETo - Scenario 1 (S1).
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values. Additionally, it maintains a minimal bias, with an MBE of −0.005, and an NSE of 0.848, signifying good 
model reliability. The KNN model shows slightly poorer performance, with a higher RMSE of 1.183 and MAE of 
0.755, but with comparable R² (0.813) and a small negative bias (MBE = −0.012). The Decision Tree (DT) model 
performs moderately, with an RMSE of 1.144 and MAE of 0.796, accompanied by an R² of 0.825 and a slightly 
larger negative bias (MBE = −0.041). The RF model’s predictions align more closely with the 1:1 reference line, 
indicating more consistent and accurate ETo estimation for this scenario. Overall, Random Forest continues to 
be the most robust model in predicting ETo under Scenario 3 conditions.

Predicted vs. observed ETo results for scenario 4 (S4)
For Scenario 4 (Fig. 26), the RF model again exhibits superior performance with an RMSE of 0.624 and an 
MAE of 0.402, indicating relatively low prediction errors. It achieves the highest R² value of 0.948, reflecting a 
strong agreement between predicted and observed ETo values. The RF model shows minimal bias with an MBE 
of −0.028 and maintains an NSE of 0.948, which suggests robust predictive accuracy and reliability. DT model 
performs moderately well, with an RMSE of 0.781 and MAE of 0.522, a slightly lower R² of 0.918, and a small 
negative bias (MBE = −0.025). KNN model shows the highest RMSE and MAE values among the three models 
at 0.691 and 0.477 respectively, with an R² of 0.936, indicating slightly less accurate predictions compared to RF 
and DT. The RF model’s predictions align most closely with the 1:1 reference line, confirming its reliability and 
accuracy in predicting ETo for this scenario.

Predicted vs. observed ETo results for scenario 5 (S5)
In Scenario 5 (Fig. 27), the RF model again demonstrates the best performance among the three algorithms, 
achieving an RMSE of 0.852 and an MAE of 0.613, which are lower than those of KNN and DT models. The RF 
model has a high coefficient of determination (R²) of 0.930, indicating a strong correlation between predicted 
and observed ETo values. The model’s bias is minimal, with an MBE of −0.005, and it maintains a high NSE of 
0.903, highlighting its accuracy and reliability. The DT model shows moderate performance with RMSE and 
MAE values of 1.046 and 0.736, respectively, and an R² of 0.853. The KNN model shows an RMSE of 0.929 and 
an MAE of 0.640, with an R² of 0.884, performing slightly better than DT but worse than RF. Overall, the RF 
model consistently provides the most accurate and precise predictions for ETo across this scenario.

Discussion
This study aimed to evaluate the predictive performance of three machine learning models K-Nearest Neighbors 
(KNN), Decision Tree (DT), and Random Forest (RF) in estimating reference evapotranspiration (ETrs) based 

Fig. 26.  Predicted vs. Observed ETo - Scenario 4 (S4).

 

Fig. 25.  Predicted vs. Observed ETo - Scenario 3 (S3).
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on meteorological variables. The results underscore the superiority of Random Forest in capturing the non-
linear relationships between meteorological inputs and ETrs, highlighting its robustness and predictive accuracy.

Temporal dependency of meteorological variables
The temporal analysis revealed significant seasonal autocorrelation in temperature variables (Tx and Tn), 
consistent with previous studies that have noted the strong seasonal patterns in temperature dynamics. 
Temperature typically exhibits long-term dependencies across multiple lags, as observed in this study, which 
aligns with findings by29. Furthermore, while temperature variations are often gradual, other meteorological 
variables such as precipitation and wind speed can exhibit more erratic short-term fluctuations, impacting 
their temporal dependencies30. Solar radiation (Rs) also exhibited clear seasonal dependencies, with significant 
short-term correlations, in agreement with studies by 31.The robust nature of the Random Forest model, as 
demonstrated in this study, stems from its ability to effectively handle such diverse temporal dependencies 
and non-linear relationships present in meteorological datasets32. Conversely, wind speed (U2) showed weak 
temporal dependence, which is consistent with earlier research by33.This weak dependency suggests that 
wind speed may have a less predictable temporal pattern compared to other meteorological variables, posing 
challenges for models that rely heavily on sequential data.

Correlation analysis
Correlation analysis confirmed that solar radiation, maximum temperature, and minimum temperature are 
the primary drivers of ETrs, with all three showing strong positive correlations with evapotranspiration. These 
results are consistent with studies such as those by 30.The robust relationships observed between these variables 
and ETrs emphasize their critical importance in hydrological modeling and agricultural water management31. 
Conversely, relative humidity and wind speed exhibited weaker or inverse correlations, indicating their lesser 
influence on ETrs compared to temperature and solar radiation34.This suggests that while temperature and solar 
radiation are direct energetic drivers of the evaporative process, humidity and wind speed play more nuanced 
roles, often modulating the atmospheric demand for water vapor rather than initiating the process itself15.Wind 
speed, exhibiting a moderate positive correlation, aligns with the findings of previous studies that demonstrated 
Random Forest’s effectiveness in capturing such relationships35. In contrast, relative humidity variables (HRx 
and HRn) showed negative correlations with ETrs, which is in agreement with findings from multiple studies, 
including those by Barzegar et al. and Ferreira et al., who reported similar negative impacts of relative humidity 
on ETo in machine-learning models36. Furthermore, variable-importance analysis reveals that solar radiation 
dominates the influence on ETr, whereas wind speed contributes the least, echoing the correlation trends 
identified herein37.

Model performance
In terms of model performance, Random Forest outperformed both KNN and DT across all evaluation metrics 
(RMSE, MAE, R², MBE, KGE, NSE), indicating its superior ability to capture the complex, non-linear relationships 
inherent in the data. This finding is consistent with the results of previous studies that reported Random Forest 
achieving higher accuracy than alternative machine-learning approaches for ET₀ estimation35,37. Moreover, 
when the full suite of meteorological predictors was utilized, Random Forest consistently yielded the lowest 
RMSE and MAE across all input configurations, while KNN’s superiority was confined to limited-temperature 
inputs37. KNN, while effective in simpler scenarios, struggled as the feature set grew more complex, reflecting its 
sensitivity to the dimensionality of the data. This result is in line with the work of previous work demonstrated 
that KNN maintains high accuracy only with limited temperature inputs, and its performance degrades as 
additional meteorological variables are incorporated38. Decision Tree, on the other hand, demonstrated lower 
overall performance, particularly in handling higher-dimensional data, which aligns with the conclusions 
drawn by those investigations that reported Decision Trees underperform in high-dimensional ET₀ estimation 
scenarios37. These findings suggest that ensemble-based approaches, which integrate the strengths of multiple 
learners, may further improve ET₀ estimation accuracy, particularly when only limited meteorological data are 
available.

Fig. 27.  Predicted vs. Observed ETo - Scenario 5 (S5).
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Feature scenario evaluation
Performance varied across different feature scenarios, with Random Forest exhibiting consistent superiority in all 
configurations. When all meteorological variables were included, RF minimized prediction errors and achieved 
the highest model fit. This result corroborates the findings of previous research demonstrating Random Forest’s 
superior performance over alternative algorithms in evapotranspiration estimation tasks38. Similar superiority 
of Random Forest has been reported in other studies where it outperformed alternative models across diverse 
meteorological input combinations35,37. KNN performed well in simpler feature scenarios, but its accuracy 
declined as more predictors were incorporated, highlighting its vulnerability to the curse of dimensionality. A 
similar pattern was observed by other studies where an increase in the number of features led to a decrease in the 
reliability of distance measures, which are fundamental to KNN’s operation15,39. Decision Tree showed moderate 
performance in less complex scenarios but was less effective as the feature set expanded, with higher RMSE and 
MAE values, supporting the findings of previous research indicating that decision trees can struggle with high-
dimensional data by creating overly complex and potentially overfitting models15.

Prediction of ETrs
The results from the ETrs prediction experiments reinforced the dominance of Random Forest in terms of 
both accuracy and reliability. RF demonstrated minimal error and strong model fit, with high values for Nash-
Sutcliffe Efficiency (NSE) and KGE, indicating excellent predictive capability. This aligns with the work of Elzain 
et al. and Uddin et al., who similarly utilized RF algorithms for feature selection in environmental hydrological 
applications due to its robustness in handling small datasets and ability to capture non-linear relationships32. RF 
achieved high NSE values in predicting ETrs. In contrast, KNN exhibited greater variability in its predictions, 
as noted by 15 and outperformed other sophisticated machine learning models like Multilayer Perceptron and 
AdaBoost in specific input combinations, particularly when relying solely on soil data. Decision Tree consistently 
underperformed, particularly in more complex feature combinations, which concurs with the observations 
made by40,41.

Model robustness and stability
Random Forest demonstrated notable robustness and stability across varying feature scenarios, producing 
consistent results with lower variability in predictions compared to KNN and DT. This stability makes RF a 
reliable model for operational applications, especially in contexts where model generalizability is crucial. 
These results are consistent with the work of Elzain et al. and Uddin et al., who also highlight the efficacy of 
RF algorithms in environmental modeling due to their inherent robustness and capacity for handling complex, 
non-linear relationships within datasets32. Conversely, KNN and DT exhibited greater sensitivity to the chosen 
feature set, leading to higher variability in their predictions and suggesting that they may not perform as reliably 
under changing conditions. Similar conclusions were drawn by previous studies have reported analogous 
sensitivity of KNN and DT to feature selection, underscoring the necessity for robust feature engineering41. 
Employing ensemble-based feature selection techniques has been shown to markedly increase the stability of 
selected subsets, thereby mitigating the variability observed in KNN and DT models42,43.

Implications for predictive modeling of ETrs
These findings have significant implications for the use of machine learning in evapotranspiration modeling. 
Random Forest emerged as the most suitable model for predicting ETrs, due to its ability to effectively handle 
complex, high-dimensional data and capture intricate variable interactions. These results align with the broader 
body of literature, including the works of Breiman’s seminal introduction of Random Forests and subsequent 
applications to soil moisture and hydrological modeling (e.g., Pan et al. demonstrated that integrating LSTM-
based models with remote sensing datasets such as SMAP and ERA5 can substantially enhance ETrs prediction 
accuracy in heterogeneous agricultural landscapes44. ETr prediction Consequently, practitioners should prioritize 
hyper-parameter optimization of Random Forests to fully exploit their capacity for capturing nonlinear ET 
dynamics across diverse climatic regimes31,35.These findings have significant implications for the use of machine 
learning in evapotranspiration modeling. Random Forest emerged as the most suitable model for predicting 
ETrs, due to its ability to effectively handle complex, high-dimensional data and capture intricate variable 
interactions. These results align with the broader body of literature, including the works of the study by (e.g., 
Zhao et al. demonstrated comparable performance of XGBoost over Random Forest in daily ETref estimation45. 
37 recommended Random Forest as the model of choice for environmental prediction tasks. Consequently, future 
studies should prioritize hyper-parameter optimization and ensemble diversity to further leverage Random 
Forest’s robustness across heterogeneous agro-ecological settings. KNN, while useful for simpler datasets, proved 
less effective as the complexity of the input features increased, supporting the observations of as demonstrated in 
earlier comparative studies of evapotranspiration estimation, where Random Forest consistently outperformed 
KNN in high-dimensional settings46–48.

Limitations and future research
This study has several limitations. The models were trained on historical meteorological data, which may 
limit their applicability to real-time or future datasets that exhibit different temporal or spatial patterns. These 
concerns were also raised by other research, which suggests that AI-based methods may produce smoother 
forecast results, potentially underestimating the magnitude of extreme weather events49. Additionally, while 
Random Forest provided accurate predictions, its black-box nature limits interpretability, an aspect that could be 
addressed in future work by exploring more transparent models or hybrid approaches that combine predictive 
power with interpretability. Further research could also incorporate spatial variability in meteorological data, as 
topographical and land use factors could influence evapotranspiration rates. Hybrid models combining machine 
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learning and time-series analysis, such as Random Forest with ARIMA or Long Short-Term Memory (LSTM) 
networks, could be explored to capture both temporal and spatial dynamics of ETrs more effectively, as suggested 
by earlier studies50. Furthermore, the reliance on global potential evapotranspiration products without site-
specific ground validation represents another limitation, particularly in underrepresented regions where the 
generalizability of findings may be constrained51.

Limitations and future work
One limitation is that the dataset is region-specific, potentially restricting the generalizability of the models to 
other climatic zones. Additionally, the study focused on standard hyperparameter tuning; advanced optimization 
techniques (e.g., Bayesian optimization) may yield further improvements.

Future research directions include expanding the geographic scope, incorporating additional climate variables 
(e.g., soil moisture), and applying more sophisticated machine learning techniques, such as deep learning, to 
enhance ETo prediction accuracy. Furthermore, exploring innovative feature engineering methods and model 
calibration approaches could address the limitations of existing ETo models and improve their applicability in 
diverse environmental settings.

Conclusion
This study provides a comprehensive evaluation of machine learning approaches for estimating daily reference 
evapotranspiration (ETo) using meteorological inputs. Temporal dependency analysis revealed that while 
variables such as temperature, solar radiation, and ETo itself exhibit strong seasonal patterns, their short-term 
temporal dependencies are limited. Conversely, wind speed and relative humidity show near-random temporal 
behavior. These findings justify the use of static, non-sequential models for ETo prediction, simplifying the 
modeling framework without significant loss of accuracy.

Among the evaluated algorithms, Random Forest consistently outperformed K-Nearest Neighbors and 
Decision Tree models in terms of predictive accuracy, robustness, and generalizability across varying parameter 
settings and feature sets. Its ability to capture complex, nonlinear relationships between meteorological variables 
and ETo underpins its superior performance. This confirms Random Forest as a reliable and practical tool for 
operational hydrological applications, irrigation management, and climate-adaptive agriculture.

Notably, this work emphasizes that detailed time-series modeling may offer limited additional benefit when 
daily meteorological inputs are available, which is an important consideration for model design in resource-
constrained contexts. However, the study’s scope is limited to daily-scale data and specific climatic conditions; 
thus, future research should investigate the model’s transferability across diverse climatic regions and explore 
integration with spatial datasets to further enhance prediction accuracy.

Overall, this study contributes a clear framework for selecting appropriate machine learning techniques 
for ETo estimation, balancing complexity and performance. It highlights the value of leveraging data-driven 
approaches that align with the intrinsic temporal characteristics of meteorological drivers, offering a practical 
path forward for improving water resource management under changing environmental conditions.

Data availability
Data is contained within the article.
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